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El Niño/Southern Oscillation (ENSO) is the leading mode of 
interannual climate variability and has substantial socio-
economic impacts, causing precipitation extremes in the 

Americas1, changes in Pacific fish stocks2 and droughts in Southeast 
Asia3. Understanding the response of ENSO to climate change is 
therefore of paramount importance for understanding climate 
impacts and adaptation options, but there is little consensus on  
the direction and magnitude of that response4,5. This forced response 
is difficult to predict because the feedbacks that drive ENSO are 
complex and multidirectional, balanced between positive dynami-
cal and negative thermodynamical feedbacks, with substantial 
cloud-driven components6,7. Several studies using Coupled Model 
Intercomparison Project Phase 5 (CMIP5) models have suggested 
that ENSO strengthens in future high-CO2 climates8–10, but models 
can disagree4–6,11 and some single-model studies suggest that ENSO 
weakens instead12. The presence of substantial unforced variability 
in ENSO means that resolution of this debate poses a challenge for 
existing modelling resources13–17.

Despite disagreements over ENSO, climate models largely agree 
that under increased CO2 the Eastern Pacific warms more than the 
Western Pacific, probably in tandem with a weakened Walker circu-
lation, decreasing the zonal temperature gradient and making the 
equatorial Pacific more ‘El Niño-like’7,18–20. Palaeoclimate studies 
also largely—though not universally—find that the warm, high-CO2 
Pliocene epoch is associated with a decreased Pacific zonal temper-
ature gradient21–23. However, the relationship between mean Pacific 
sea surface temperatures (SSTs) and ENSO amplitude remains 
unclear5,11. Some studies hypothesize that a weakened zonal temper-
ature gradient should dampen ENSO24, but others hypothesize that 
it should strengthen it by reducing the barrier to convection in the 
Eastern Pacific6,20, and some argue that El Niño-like variability may 
have been present in the Pliocene despite the reduced temperature 

gradient25. Moreover, the observed Pacific zonal temperature gra-
dient has been strengthening in recent decades, rather than weak-
ening, raising questions about whether models accurately simulate 
the tropical Pacific26 or whether internal variability dominates the 
relatively short observational record27.

In this study we exploit the Long Run Model Intercomparison 
Project (LongRunMIP), a new archive of 1,000-year or longer fully 
coupled climate model simulations28, to distinguish the forced 
response of ENSO from internal variability and clarify the rela-
tionship between ENSO and the Pacific mean climate. We mea-
sure ENSO using quadratically detrended9, area-averaged surface 
air temperature anomalies in the Niño3.4 region (Fig. 1a,b), and 
we define ENSO amplitude using the standard deviation of these 
anomalies (Fig. 1c)16. While some studies have suggested that differ-
ent ‘flavours’ of ENSO may require different indices, or that its pri-
mary location may shift in future climates10,29, our results are similar 
whether we use the Niño3 (Eastern Pacific) or Niño4 (Western 
Pacific) index (Supplementary Fig. 1), and the spatial structure of 
Pacific variability does not exhibit shifts to new centres of action 
outside these indices (Fig. 1a,b, Methods, Supplementary Table 1 
and Supplementary Fig. 2). LongRunMIP simulations include sce-
narios of both abrupt and gradual CO2 change with different CO2 
perturbations (Methods and Supplementary Table 2). To compare 
short- and long-term responses, we define a ‘transient’ period as 
years 50–150 in abrupt simulations and 1–140 in gradual, and con-
sider the remainder of each simulation as ‘equilibrium’ (Methods 
and Fig. 1d,e). Results are not sensitive to this precise division 
(Methods and Supplementary Fig. 3).

In the equilibrium period, ENSO amplitude decreases in nearly 
all high-CO2 simulations (Fig. 2) while ENSO frequency shows no 
clear changes (Supplementary Fig. 4). The only exceptions are simu-
lations from MPI-ESM-1.2 and CNRM-CM6.1, which show slight 
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increases; in the eight other models, ENSO amplitude decreases. 
All changes are statistically significant according to a Wilcoxon 
rank-sum test on the distribution of amplitudes in 100-year over-
lapping segments (Methods). Declines in amplitude scale with CO2 
forcing, as would be expected given a causal relationship: in the three 
models with simulations of different forcing, larger CO2 increases 
are monotonically associated with greater ENSO amplitude decline 
(Fig. 2). In CESM1.0.4 and HadCM3L, ENSO amplitude declines 
by 29 and 8% at 2× CO2 and by 61 and 47% at 8× CO2, respectively. 
Changes in equilibrium ENSO frequency, on the other hand, show 
no consistent pattern (Supplementary Fig. 4). We define ENSO 
occurrence based on threshold exceedance for the Niño3.4 tem-
perature anomaly, with the threshold defined as the 75th–90th per-
centiles for control and high-CO2 simulations separately (Methods). 
If frequency is defined using an absolute threshold instead8,9, an 
amplitude decline must be associated with a corresponding reduc-
tion in the number of identified El Niño events (Supplementary 
Fig. 4). With a percentile-based definition, the robust weakening 
in the magnitude of El Niño events in LongRunMIP simulations is 
not accompanied by a clear change in their number per year (see 
Supplementary Table 3 for ENSO amplitude and frequency in each 
simulation). Note that our results are not inconsistent with previ-
ous studies that defined El Niño using precipitation thresholds and 
found future increases in frequency8. These studies used absolute 
rather than fractional thresholds, which are crossed more fre-
quently when precipitation means increase (Supplementary Fig. 5).  

LongRunMIP models also show increases in extreme El Niño pre-
cipitation (Supplementary Fig. 5), consistent with findings that 
in a warmer climate, Eastern Pacific precipitation variability can 
increase even while SST fluctuations decrease8,30.

In the transient period, changes in ENSO amplitude dif-
fer substantially in magnitude and even in sign but, in nearly all 
simulations, the transient change is smaller in magnitude than 
the equilibrium change (Figs. 2 and 3). The ensemble behaviour 
appears well explained by a combination of (1) partial evolution 
towards an equilibrium response and (2) unforced variation in 
the initial transient-period amplitude (Fig. 3 and Supplementary  
Figs. 6 and 7). CNRM-CM6.1 and GFDL-CM3 are the excep-
tions, with transient increases outside the control simulation 
range. Internal variation in ENSO amplitude can be substantial 
in millennial-scale simulations. We quantify these long-timescale 
changes by calculation of ENSO amplitudes in overlapping 100-year 
segments of each control run, and computing the 5th–95th percen-
tile range of their distribution. All LongRunMIP models exhibit 
substantial fluctuation in ENSO amplitude over time: individual 
100-year amplitudes in the average model can be as low as 15% 
below its long-term average or as high as 15% above it (Fig. 3 and 
Supplementary Figs. 6 and 7). These results are consistent with esti-
mates of ENSO internal variability derived from initial-condition 
ensembles of shorter simulations15–17.

The diversity in transient ENSO responses therefore appears 
to result from both variations in the pace of model equilibration 
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Fig. 1 | Methods used to analyse ENSO in longRunMiP simulations. a,b, Composites of Pacific temperature anomalies during El Niño events, defined 
as the Niño3.4 index between its 75th and 90th percentiles (Methods) in the GISS-E2-R control (a) and GISS-E2-R abrupt4× (b) simulations. Pattern 
correlation between the two composites is 0.92. c, Example time series of Niño3.4 temperature anomalies; grey shading denotes s.d., which we define 
as ENSO amplitude. The figure shows a 50-year segment to illustrate the evolution of individual ENSO events, but in analysis we define amplitude using 
100-year segments. d,e, Illustration of transient and equilibrium periods using Niño3.4 average temperature in the GISS-E2-R abrupt4× (d) and GISS-E2-R 
1pct4× (e) simulations.
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Fig. 2 | Percentage changes in ENSO amplitude after a sustained increase in CO2. Simulations from the same model are shown in the same colour. Box 
plots show distributions of changes in 100-year running segments in each high-CO2 equilibrium period, as compared to the complete control run. Middle 
line denotes the median, box boundaries show the interquartile range (25th–75th percentiles) and whiskers extend to the fifth and 95th percentiles of the 
data. Circles indicate changes in the transient period. All changes are statistically significant according to a Wilcoxon rank-sum test (Methods), and all 
models other than MPI-ESM-1.2 and CNRM-CM6.1 show declines in ENSO amplitude in all scenarios.
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and internal variability in ENSO amplitude on centennial times-
cales. In around half of the LongRunMIP simulations, the tran-
sient ENSO amplitude response lies within the 5th–95th percentile 
envelope of the millennial-scale unforced variability defined above. 
In the other half, the transient response is outside the envelope of 
variability but in the same direction as the equilibrium response. 
Differences in these models can be explained largely by the differ-
ing rates with which ENSO responses equilibrate after an increase in 
CO2. In models where ENSO equilibrates rapidly relative to global 
mean warming (for example, CESM1.0.4; Fig. 3a,d), the transient 
and equilibrium responses are similar; in models where equilibra-
tion is more gradual (for example, HadCM3L and IPSL-CM5A-LR;  
Fig. 3b,c,e,f), ENSO evolution continues beyond the transient 
period and transient and equilibrium responses differ.

Explaining this diversity helps reconcile disparate findings 
from previous studies, by demonstrating that disparities may result 
from differences in equilibration and internal variability rather 
than from any fundamental difference in ENSO-related physi-
cal processes13,15,16. For example, the LongRunMIP GFDL-ESM2M 
simulation shows a transient increase in ENSO amplitude but an 
equilibrium period decrease (Fig. 2), consistent with a previous 
paper that found an amplitude decrease in several hundred years 
of an abrupt CO2 change scenario12. In addition, the transient 
increase in our GFDL-ESM2M simulation lies within the control 
simulation variability, so it may be a manifestation of unforced 
variability; large amounts of unforced variability can confound 
identification of transient changes (Supplementary Figs. 6 and 7). 

More broadly, other recent papers have used SST-based metrics to 
project an increase in ENSO variability10 but substantial intermodel 
disagreement remains31, at least partly due to internal variability in 
twenty-first-century simulations32. These findings are consistent 
with our results showing model disagreement in transient changes 
in ENSO amplitude (Fig. 2), given the substantial multidecadal  
fluctuations in ENSO amplitude (Fig. 3).

Previous studies suggest a relationship between changes 
in ENSO and those in the Pacific zonal temperature gradient, 
although the nature of this relationship is debated5–7,24 and may be 
state dependent33. In all but one LongRunMIP simulation, warm-
ing under high-CO2 conditions is larger in the Eastern Pacific than 
in the Western Pacific, resulting in a reduced zonal temperature 
gradient, sometimes termed ‘El Niño-like warming’18 (Fig. 4 and 
Supplementary Figs. 8 and 9) (the exception is GFDL-ESM2M, as 
noted previously34). Pacific gradients can decline to less than half 
of their control values to the point that, in many cases, the future 
Pacific actually exceeds a permanent El Niño: that is, the mean 
gradient in the forced simulation is weaker even than El Niño con-
ditions in the control run (Supplementary Fig. 10). Potential driv-
ers of this weakened gradient include changes in cloud albedo and 
amount18, greater evaporative cooling in the Western Pacific35 and a 
slowdown in zonal atmospheric circulation19. In almost all LongMIP 
simulations the Walker circulation does weaken (Supplementary 
Fig. 8), consistent with a mechanism in which decreased circula-
tion weakens the trade winds and depresses upwelling, reducing 
the zonal temperature gradient7. The zonal temperature gradient 
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response is correlated with the ENSO amplitude response across 
simulations, and in both transient and equilibrium periods: stron-
ger decreases in mean temperature gradient are associated with 
stronger decreases in amplitude (Fig. 4b,c). The relationships in the 
transient (P = 0.004) and equilibrium (P = 0.006) periods are also 
similar: the regression line from the transient period lies within the 
uncertainty bands of the equilibrium period. These results remain 
qualitatively unchanged if we use only one simulation from each 
model (Supplementary Fig. 11).

Observations have suggested that the zonal temperature gradi-
ent has been strengthening, which raises some concerns about the 
models26. Model representations of ENSO have been shown to be 
biased in studies of, for example, relative humidity26, interbasin 
warming contrasts36 or the equatorial undercurrent37. However, 
observed trends in the zonal temperature gradient are well within 
the range of unforced variability from LongRunMIP control 
simulations (Methods and Supplementary Fig. 12). It remains 
under debate whether the observed trend is due to internal vari-
ability27,38, to a forced response not captured by the models26 or 
even to observational error39. Conclusively settling the debate is 
outside the scope of this work, but LongRunMIP control simula-
tions show that it is at least plausible that the observed trend is a 
manifestation of internal variability and not inconsistent with the  
forced response.

Our results provide insights into the mechanisms controlling 
ENSO changes. The oscillation of ENSO temperature anomalies 
results from a balance between a positive dynamical feedback (the 
Bjerknes feedback, in which higher Eastern Pacific SSTs reduce east-
erly wind stress and further allow heat to build up) and a negative 
thermodynamic feedback (in which SST anomalies in turn increase 
heat flux from the surface)5,40,41. Although no solid theory predicts 
the net effect of changes in these feedbacks in a warmer world6, 
previous studies have suggested that a decreased zonal temperature 
gradient should be associated with a stronger Bjerknes feedback 
that amplifies ENSO: increased upper-ocean stratification and a 
shoaling of the thermocline would increase dynamical wind–ocean 
coupling5,7,10,42. The LongRunMIP behaviour might seem in conflict 
with this mechanism but we find that, in all LongRunMIP models, 
the thermocline does indeed shoal, flatten latitudinally and sharpen 
vertically as predicted (Supplementary Fig. 14). The issue is there-
fore not a conflict of mechanism but rather that some additional 
process outweighs this dynamical effect, producing a net reduction 
in ENSO amplitude.

In the LongRunMIP models, the negative thermodynamic 
feedback does indeed strengthen. That is, the forced runs show a 
stronger additional net export of energy from the ocean surface per 
degree Niño3.4 temperature anomaly, with about half of the effect 
coming from increased latent heat export and half from increased 
cloudiness that reduces incoming short-wave radiation (consistent 
with refs. 40,41,43,44). For the abrupt4× CO2 forcing ensemble mean, 
the relationship between additional net heat flux and tempera-
ture anomalies is 6.2 Wm−2 K−1, >70% stronger than in the control 
runs (Supplementary Fig. 15). Reduced short-wave radiation and 
increased latent heat flux make nearly equal contributions at 3.3 
and 3.2 Wm−2 K−1, respectively, 72 and 59% stronger than in control 
runs (Supplementary Figs. 16 and 17). The thermodynamic feed-
back strengthens in all LongRunMIP models except for GISS-E2-R, 
which exhibits other anomalies such as a reversed Walker circula-
tion and biased local radiative feedbacks45. Increased heat export 
therefore appears to compensate for strengthened dynamical feed-
backs to dampen ENSO amplitude. However, because LongRunMIP 
data are not sufficient for rigorous analysis of the strength of wind–
ocean coupling in our simulations, it is difficult to quantitatively 
balance these two feedbacks. We leave further analysis of these 
feedbacks, as well as more recent proposed processes such as ENSO 
‘self-modulation’46, for future work.

The combination of a weaker ENSO amplitude and a more 
homogenous tropical mean state seen in LongRunMIP models is 
supported by palaeoclimate evidence. These conditions are analo-
gous to the permanent El Niño that may have characterized the 
Pliocene epoch21,22,25. The LongRunMIP experiments do involve 
CO2 concentrations higher than those likely in the Pliocene47, but 
our results demonstrate that Pliocene-like conditions are at least 
physically plausible in a warmer world.

These results demonstrate the necessity of millennial-scale sim-
ulations of coupled climate models for understanding changes in 
low-frequency phenomena such as ENSO. Previous studies have 
argued or shown that unforced variability in ENSO characteristics 
confounds studies of its change in relatively short simulations13,15,16,48. 
We confirm here that centennial-scale unforced variability is com-
parable to projected changes under a wide range of CO2 forcing, 
providing a major complicating factor to short-term analyses. 
Millennial-scale climate simulations allow us to diagnose the 
long-term forced effect of CO2 changes: a robust long-term decline 
in ENSO amplitude in tandem with a flatter mean zonal tempera-
ture gradient, potentially due to enhanced thermodynamic damp-
ing. For understanding the human impacts of climate change, the 
most relevant changes are those in the twenty-first century under 
relatively modest CO2 increases, and it remains unclear whether 
models can guide reliable forecasts of ENSO changes on decadal 
to centennial timescales14. Our results do suggest that the observed 
strengthening of the Pacific zonal temperature gradient is consis-
tent with internal variability27,38, meaning that these millennial-scale 
simulations can usefully inform short-term interpretation of the 
observational record. Regardless, our results demonstrate a consis-
tent long-term weakening of ENSO and lend support to the pos-
sibility of a permanent El Niño in a high-CO2 world.
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Methods
The LongRunMIP archive. The LongRunMIP is a new archive of millennial-length,  
fully coupled climate model simulations collected to characterize the response of 
the climate system to CO2 over the course of thousands of years28. The following 
LongRunMIP models are included in our analysis: CCSM349,50, CESM1.0.4 
(refs. 51–53), CNRM-CM6-1 (ref. 54), GFDL-CM3 (refs. 55,56), GFDL-ESM2M56,57, 
GISS-E2-R58–61, HadCM3L62,63, IPSL-CM5A-LR64, MIROC3.2 (refs. 65–67) and 
MPI-ESM-1.2 (refs. 68,69). While other models are included in the LongRunMIP 
archive, we select the ten models for which monthly mean surface air temperature 
and sea level pressure are available for at least 1,000 years after an increase in  
CO2 concentrations.

The most common forcing experiment in our sample of the LongRunMIP  
is an instantaneous quadrupling of CO2 (abrupt4×), but there are also several 
abrupt2×, abrupt6× and abrupt8× experiments and several ramps of an annual 
increase of 1% CO2 (ppm) to the 2× or 4× CO2 level. Each model has a control 
simulation and at least one high-CO2 simulation, for a total of 21 high-CO2 
simulations and ten control runs; see Supplementary Table 2 for the models, 
experiments and lengths that we used. Each simulation in our subset of the 
LongRunMIP is at least 1,000 years in length, with the exception of the MIROC3.2 
control run (681 years).

The goal of this analysis of LongRunMIP is not direct comparison of  
our results with those from studies using the CMIP5 archive, since we include a 
range of forcings (for example, abrupt8×CO2) that are not included in CMIP5,  
and the model versions are slightly different in some cases. In addition,  
these experiments are not meant to be compared with experiments using 
representative concentration pathways (RCPs), because most of our experiments 
use substantially higher CO2 concentrations than those of the RCPs. The purpose 
of the LongRunMIP is to distinguish the short- and long-term responses  
of the Earth system to increased CO2, and to draw inferences about climate 
projections based on this unique ability to understand millennial-scale responses 
and variability.

The models we chose are not independent. However, they sample well  
from the CMIP5 archive and include models from multiple countries and 
modelling centres (for example, the National Center for Atmospheric Research, 
Goddard Institute for Space Studies, Hadley Centre for Climate Prediction and 
Research and Max Planck Institute). In addition, the inclusion of multiple types  
of experiment from the same model allows us to examine the sensitivity of our 
results to the forcing type. In particular, GISS-E2-R abrupt4× and 1pct4×  
have very similar equilibrium amplitude changes but very different transient 
amplitude changes.

Spatial indices. We analyse monthly mean surface air temperature (TAS) from 
each model as a proxy for sea surface temperature (SST), because TAS is more 
consistently available on monthly timescales in the LongRunMIP archive. 
Thermodynamic exchange between the atmosphere and surface ocean is 
sufficiently efficient to render surface air temperature an effective representation of 
SST20. We use the Niño3.4 index (Fig. 1a,b), area-averaged temperature anomalies 
from 5° S–5° N and 120° W–170° W, to measure ENSO amplitude. We calculate 
anomalies by removing the long-term monthly mean from each value within 
each simulation, thus eliminating mean shifts and the seasonal cycle, and we 
quadratically detrend each time series9.

We also use surface air temperature to describe the zonal temperature 
gradient in the Equatorial Pacific, which we define as the difference between the 
area-averaged (non-anomalized) temperature in the Niño4 region (5° S–5° N, 
160° E–150° W) and the area-averaged temperature in the Niño3 region (5° S–5° N, 
150° W–90° W). An increase/positive change in the zonal temperature gradient 
means enhanced warming in the Western Pacific warm pool (La Niña-like 
warming), while a decrease/negative change in the temperature gradient means 
enhanced warming in the Eastern Pacific cold tongue (El Niño-like warming). 
We follow ref. 70 in describing the zonal Pacific atmospheric circulation (Walker 
circulation) by using the difference in sea level pressure (SLP) between the Eastern 
Pacific (5° S–5° N, 160° W–80° W) and Western Pacific (5° S–5° N, 80° E–160° E). An 
increase in the SLP gradient implies increased convection in the Western Pacific 
relative to the Eastern Pacific, and therefore a strengthened Walker circulation, 
while a decrease in the SLP gradient implies a weakened Walker circulation.

Spatial correlation analysis. To understand how increases in CO2 affect the spatial 
structure of variability in the Pacific, we map the standard deviation of temperature 
across the Pacific (15° S–15° N, 150° E–80° W) after smoothing the temperature 
time series at each location with a 12-month running mean to reduce the influence 
of the seasonal cycle and other non-ENSO variability. We then compute pattern 
correlations between the standard deviation map in each forced simulation relative 
to its corresponding control simulation (Supplementary Table 1) using centred 
pattern correlations, meaning that the spatial average is removed within each 
simulation and only deviations from the spatial average are compared. Large values 
of this correlation indicate similar spatial patterns of variability under control and 
high-CO2 conditions.

Indeed, many LongRunMIP simulations have high (>0.9) pattern correlation 
values (Supplementary Table 1). However, some (for example, GISS-E2-R and 

HadCM3L) do not. In Supplementary Fig. 2 we show two examples of simulations 
with high pattern correlations and four with smaller correlations. Importantly, 
even in simulations with relatively smaller pattern correlations (<0.9), variability 
decreases across the Pacific under increased CO2 and there is no centre of action 
for El Niño outside the Niño3, Niño3.4 and Niño4 regions (a location of  
small variability appears south of these regions in HadCM3L abrupt8×,  
but the magnitude of this variability is small compared to the control simulation). 
These results support our use of these spatial indices to track changes in  
ENSO variability.

ENSO amplitude. We define ENSO amplitude as the standard deviation of the 
detrended time series of Niño3.4 temperature anomalies16 (Fig. 1c). To define 
changes in amplitude between each control and high-CO2 simulation, we take the 
100-year running standard deviation of Niño3.4 anomalies in both experiments 
and then calculate the percentage difference between each value in the high-CO2 
experiment and the mean amplitude value from the control.

El Niño events and ENSO frequency. We quantify changes in ENSO frequency 
by constructing a measure of El Niño event occurrence in four steps: (1) we define 
the threshold for a ‘typical’ El Niño event as the mean of the 75th–90th percentile 
Niño3.4 temperature anomalies in each simulation (although our results are not 
sensitive to this definition); (2) we smooth the data with a 12-month running mean 
to avoid multiple transitions between El Niño and non-El Niño states within a 
single event; (3) we calculate the number of times in each century that the Niño3.4 
anomaly transitions from below the threshold to greater than or equal to it, and we 
define each transition as one ‘event’; and (4) we normalize this value by calculating 
a percentage change in frequency for each century of the forced simulation relative 
to the number of events per century in the control.

We perform this calculation twice: first by defining the temperature anomaly 
threshold separately for the control and high-CO2 simulations (Supplementary 
Fig. 4), and second by defining it solely based on the control simulation and 
applying that control definition to the high-CO2 simulation (Supplementary Fig.4). 
The first metric fully decouples shifts in ENSO frequency from changes in the 
overall probability distribution of temperature anomalies, and therefore provides 
an independent metric to determine changes in the number of El Niño events. 
The second metric conflates changes in ENSO amplitude and those in ENSO 
frequency: a decrease in standard deviation by definition implies a narrowing of 
the probability distribution of temperature anomalies, and therefore a reduced 
likelihood of crossing thresholds defined solely by the control simulation. Results 
from this metric confirm our findings of a decreased amplitude and narrower 
distribution of temperature anomalies.

Statistical analysis. We determine whether differences between control 
and high-CO2 simulations are statistically significant by comparison of two 
distributions: 100-year running standard deviations in the case of ENSO amplitude 
and 100-year running means in the case of the zonal temperature and SLP 
gradients. We test this difference with a non-parametric Wilcoxon rank-sum 
test (also known as a Mann–Whitney U-test), which tests the null hypothesis 
that the two samples are from the same underlying distribution by comparison 
of the relative ranks of the two samples when combined into one distribution. 
We use a non-parametric test since the distributions of ENSO amplitudes are 
often non-normal (Supplementary Fig. 6), although we find similar results with a 
Student’s t-test. Significance is assessed at the 5% level (P < 0.05) in all cases.

We use Pearson’s r as the correlation coefficient in Fig. 4 (n = 21, degrees of 
freedom = 19), again assessing significance at the 5% level. However, because 
Pearson’s r assumes that the data are normally distributed, we recompute the 
correlations in Fig. 4 using Spearman’s rank correlation (ρ, a non-parametric test) 
and we again find that the two relationships are statistically significant at the 5% 
level (transient P = 0.005, equilibrium P = 0.008).

Distinguishing short- and long-term responses. We divide each high-CO2 
simulation into a transient and an equilibrium period to quantify the time 
dependence of changes due to increased CO2 (Fig. 1d,e). To best compare  
changes in ENSO measured from LongRunMIP with those measured by studies 
using the CMIP5 archive, we define the transient period according to the length  
of the typical CMIP5 abrupt and 1% ramp experiments. Thus, in simulations  
with a 1% ramp of CO2, we define the transient period as the first 140 years  
of the high-CO2 simulation. In simulations with an abrupt increase in CO2, we 
define the transient period as years 50–150 (we exclude the first 50 years to  
control for rapid adjustments to CO2)11. In both cases we define the equilibrium 
period as the remainder of the simulation after the transient period. We also test 
the sensitivity of our results to these definitions by, for example, defining the 
transient period as various percentages (for example, 75%) of the total global 
mean surface temperature anomaly in each model, or shifting the break between 
transient and equilibrium periods. The results are qualitatively unchanged 
(Supplementary Fig. 1).

Differentiation between transient and equilibrium periods is somewhat 
arbitrary. Full equilibration requires millennia28, but our classification is an 
approximation of the periods in a time series in which trends may shift from an 

NatuRE CliMatE ChaNgE | www.nature.com/natureclimatechange

http://www.nature.com/natureclimatechange


Articles NaturE ClImatE CHaNgE

immediate to a longer-term response. See ref. 71 for further discussion of climate 
equilibrium and its relation to transient timescales.

We process Niño3.4 data for each simulation by subtracting the long-term 
monthly mean from each monthly value and removing the long-term trend using 
a quadratic fit9. We remove the trend from the transient and equilibrium periods 
separately to account for trend shifts after the initial adjustment to forcing.

Pacific mean climate. We quantify changes in the Pacific mean climate by taking 
100-year running means of the zonal temperature gradient and SLP gradient from 
each simulation and calculating percentage changes between each value from the 
high-CO2 simulation and the mean value from the control. To calculate average 
zonal temperature gradients during El Niño events (dashed lines in Fig. 4a), we 
define a typical El Niño event as the 75th–90th percentile Niño3.4 temperature 
anomalies as in our frequency calculation, and we calculate the mean zonal 
temperature gradient only during those months whose temperature anomalies 
fall within that boundary. Our results are not sensitive to these definitions—for 
example, we find similar results if we expand the definition of El Niño events to 
encompass the 75th–100th percentiles. We define La Niña events similarly, as 
the months in which Niño3.4 temperature anomalies fall within the tenth–25th 
percentiles, with results again not sensitive to this precise definition.

Global mean temperature anomalies. To use global mean temperature anomalies 
as a baseline in Fig. 3, we define global mean temperature as the weighted average 
of TAS, with weights determined by the square root of the cosine of latitude.  
Global mean surface temperature anomalies for each high-CO2 simulation are 
defined as changes relative to the average global mean surface temperature from 
the entire control simulation. One-hundred-year rolling means are used in  
Fig. 3 for an apples-to-apples comparison with 100-year rolling standard deviations 
(that is, ENSO amplitude).

Comparison of observed and modelled zonal temperature gradient trends. 
LongRunMIP control simulations provide useful information regarding 
millennial-scale unforced variability in the tropical Pacific. To contribute to the 
ongoing debate over whether observed trends in the Pacific zonal temperature 
gradient are forced responses26 or internal variability27, we compare these observed 
trends to distributions of trends from the ten control simulations we analyse here 
(Supplementary Fig. 12). Observed SST data are drawn from the datasets ERSSTv.5 
(ref. 72) and HadISST 73.

We calculate rolling 25- and 35-year least-squares linear trends in the zonal 
temperature gradient, as defined in Spatial indices, from each control simulation 
over the entire simulation and from the observations over the years 1958–2017  
(ref. 26). Supplementary Fig. 12 plots these distributions of trends.

Thermodynamic feedback changes. To understand the thermodynamics 
of El Niño events under high-CO2 conditions, we consider the negative heat 
flux feedback that acts in the direction opposite to the positive Bjerknes 
feedback40,41,43,44. An increase in this feedback would tend to dampen ENSO 
amplitude. This negative feedback can be approximated as linear with the following 
formulation: F′ =αT′, with feedback parameter α, atmosphere-to-ocean heat flux 
anomalies F′ and temperature anomalies T′. α is therefore a negative feedback 
when positive SST anomalies reduce net heat flux into the ocean, dampening El 
Niño events.

Net surface fluxes are defined as the sum of long-wave, short-wave,  
latent heat and sensible heat fluxes. We therefore measure the net size of the 
thermodynamic feedback, αNET, by regressing net surface flux anomalies in the 
Niño3.4 region onto temperature anomalies from the same region40,41. Previous 
literature40,41,43,44 has highlighted the dominant contributions of the short-wave 
feedback, αSW and the latent heat flux feedback, αLH to net flux feedback. As such, 
we focus on these two specific feedbacks. We calculate the short-wave feedback  
by regressing short-wave downwelling radiation anomalies (the short-wave 
upwelling feedback is negligible) over the Niño3.4 region onto Niño3.4 
temperature anomalies, and we calculate the latent heat flux feedback by regressing 
latent heat flux anomalies onto temperature anomalies in the same fashion.  
We use 100-year rolling regressions, estimated with ordinary least squares, to 
estimate distributions of these feedbacks in each simulation analogous to the 
distributions of ENSO amplitude.

These calculations use anomalies where monthly values from each simulation 
are referenced to their own long-term monthly means, so that mean shifts (and 
therefore climatological feedbacks) are removed along with the seasonal cycle. All 
quantities are detrended in the same manner as the ENSO indices (Distinguishing 
short- and long-term responses).

Data availability
All processed data required to reproduce the results of this study are available at 
https://github.com/ccallahan45/Callahan-et-al_NCC_2021/, archived on Zenodo 
at https://doi.org/10.5281/zenodo.4718010 (ref. 74). Raw LongRunMIP data are 
not provided due to large file sizes, but these data are publicly available at https://
data.iac.ethz.ch/longrunmip/, with further information available at http://www.
longrunmip.org.

Code availability
Analysis code required to reproduce the results of this study is available at https://
github.com/ccallahan45/Callahan-et-al_NCC_2021/, archived on Zenodo at 
https://doi.org/10.5281/zenodo.4718010 (ref. 74).
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